Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.932
Filtrar
1.
Ann Diagn Pathol ; 70: 152301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581761

RESUMO

INTRODUCTION: Despite screening, the incidence of breast cancer is increasing worldwide. Neoadjuvant chemotherapy (NAC) response is one of the most important parameters taken into consideration in surgery, optimal adjuvant chemotherapy planning and prognosis prediction. Research on predictive markers for the response to NAC is still ongoing. In our study, we investigated the relationship between tumor-infiltrating neutrophils/mast cells/lymphocytes and NAC response in breast carcinomas. MATERIAL AND METHOD: Study included 117 patients who were diagnosed with invasive breast carcinoma using core needle biopsy. In these biopsies tumor-infiltrating neutrophils/mast cells/lymphocytes were evaluated and Miller Payne Score was used for NAC response. RESULT: 53 patients exhibited high TILs, 36 had high TINs, and 46 showed high TIMs. While pathological complete response was 27 % in all patients, it was 38 % in high TINs patients, 35 % in high TILs patients, and 28 % in high TIMs patients. High TIMs were observed to be statistically associated with survival. TILs, TINs, nuclear grade, ER, PR and HER2 expression, Ki-67 proliferation index were found to be associated with the Miller - Payne score. In multivariate analysis, TINs, nuclear grade, pathological stage, and molecular subtype were found to be independent risk factors for treatment response. CONCLUSION: TINs have better prognostic value to predict neoadjuvant treatment than TILs. High TIMs are associated with increased overall survival. The inclusion of TINs in NAC response and TIMs in overall survival in pathology reports and treatment planning is promising in breast carcinomas as they are simple to use and reproducible markers.


Assuntos
Neoplasias da Mama , Linfócitos do Interstício Tumoral , Terapia Neoadjuvante , Neutrófilos , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Feminino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Adulto , Linfócitos do Interstício Tumoral/imunologia , Neutrófilos/patologia , Neutrófilos/metabolismo , Idoso , Prognóstico , Quimioterapia Adjuvante/métodos , Linfócitos/patologia , Linfócitos/metabolismo
2.
Cells ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667305

RESUMO

The significant role of mast cells in the development of allergic and inflammatory diseases is well-established. Among the various mechanisms of mast cell activation, the interaction of antigens/allergens with IgE and the subsequent binding of this complex to the high-affinity IgE receptor FcεRI stand out as the most studied and fundamental pathways. This activation process leads to the rapid exocytosis of granules containing preformed mediators, followed by the production of newly synthesized mediators, including a diverse array of cytokines, chemokines, arachidonic acid metabolites, and more. While conventional approaches to allergy control primarily focus on allergen avoidance and the use of antihistamines (despite their associated side effects), there is increasing interest in exploring novel methods to modulate mast cell activity in modern medicine. Recent evidence suggests a role for autophagy in mast cell activation, offering potential avenues for utilizing low-molecular-weight autophagy regulators in the treatment of allergic diseases. More specifically, mitochondria, which play an important role in the regulation of autophagy as well as mast cell activation, emerge as promising targets for drug development. This review examines the existing literature regarding the involvement of the molecular machinery associated with autophagy in FcεRI-dependent mast cell activation.


Assuntos
Autofagia , Mastócitos , Receptores de IgE , Autofagia/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/imunologia , Humanos , Receptores de IgE/metabolismo , Animais , Mitocôndrias/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/tratamento farmacológico
3.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667325

RESUMO

Recent studies suggested the potential role of mast cells (MCs) in the pathology of coronavirus disease 2019 (COVID-19). However, the precise description of the MCs' activation and the engagement of their proteases is still missing. The objective of this study was to further reveal the importance of MCs and their proteases (chymase, tryptase, and carboxypeptidase A3 (CPA3)) in the development of lung damage in patients with COVID-19. This study included 55 patients who died from COVID-19 and 30 controls who died from external causes. A histological analysis of the lung parenchyma was carried out to assess the protease profiles and degranulation activity of MCs. In addition, we have analyzed the general blood test, coagulogram, and C-reactive protein. The content of tryptase-positive MCs (Try-MCs) in the lungs of patients with COVID-19 was higher than in controls, but their degranulation activity was lower. The indicators of chymase-positive MCs (Chy-MCs) were significantly lower than in the controls, while the content of CPA3-positive MCs (CPA3-MCs) and their degranulation activity were higher in patients with COVID-19. In addition, we have demonstrated the existence of correlations (positive/negative) between the content of Try-MCs, Chy-MCs, and CPA3-MCs at different states of their degranulation and presence (co-adjacent/single) and the levels of various immune cells (neutrophils, eosinophils, basophils, and monocytes) and other important markers (blood hemoglobin, activated partial thromboplastin time (aPTT), international normalized ratio (INR), and fibrinogen). Thus, the identified patterns suggest the numerous and diverse mechanisms of the participation of MCs and their proteases in the pathogenesis of COVID-19, and their impact on the inflammatory process and coagulation status. At the same time, the issue requires further study in larger cohorts of patients, which will open up the possibility of using drugs acting on this link of pathogenesis to treat lung damage in patients with COVID-19.


Assuntos
COVID-19 , Pulmão , Mastócitos , SARS-CoV-2 , Triptases , Humanos , COVID-19/imunologia , COVID-19/patologia , Mastócitos/patologia , Mastócitos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Triptases/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Degranulação Celular , Quimases/metabolismo , Carboxipeptidases A/metabolismo , Adulto , Idoso de 80 Anos ou mais , Estudos de Casos e Controles
5.
Mol Immunol ; 170: 60-75, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626622

RESUMO

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.

6.
J Ethnopharmacol ; 330: 118105, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631485

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) XYQFT is composed of 10 herbs. According to the NHIRD, XYQFT is one of the top ten most commonly used TCM prescriptions for asthma treatment. AIM OF THE STUDY: The aim of this study was to explore whether XYQFT reduces asthma symptoms in a mouse model of chronic asthma and determine the immunomodulatory mechanism of mast cells. MATERIALS AND METHODS: BALB/c mice were intratracheally (it) stimulated with 40 µL (2.5 µg/µL) of Dermatophagoides pteronyssinus (Der p) once a week for 6 consecutive weeks and orally administered XYQFT at 1 g/kg 30 min before Der p stimulation. Airway hypersensitivity, inflammatory cells in the BALF and total IgE in the blood were assessed in mice. In addition, RBL-2H3 cells (mast cells) were stimulated with DNP-IgE, after which different concentrations of XYQFT were added for 30 min to evaluate the effect of XYQFT on the gene expression and degranulation of DNP-stimulated RBL-2H3 cells. After the compounds in XYQFT were identified using LC‒MS/MS, the PBD method was used to identify the chemical components that inhibited the expression of the GM-CSF and COX-2 genes in mast cells. RESULTS: The airway hypersensitivity assay demonstrated that XYQFT significantly alleviated Der p-induced airway hypersensitivity. Moreover, cell counting and typing of bronchoalveolar lavage fluid revealed a significant reduction in Der p-induced inflammatory cell infiltration with XYQFT treatment. ELISA examination further indicated a significant decrease in Der p-induced total IgE levels in serum following XYQFT administration. In addition, XYQFT inhibited the degranulation and expression of genes (IL-3, IL-4, ALOX-5, IL-13, GM-CSF, COX-2, TNF-α, and MCP-1) in RBL-2H3 cells after DNP stimulation. The compounds timosaponin AIII and genkwanin in XYQFT were found to be key factors in the inhibition of COX-2 and GM-CSF gene expression in mast cells. CONCLUSION: By regulating mast cells, XYQFT inhibited inflammatory cell infiltration, airway hypersensitivity and specific immunity in a mouse model of asthma. In addition, XYQFT synergistically inhibited the expression of the GM-CSF and COX-2 genes in mast cells through timosaponin AIII and genkwanin.

8.
Inflammation ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565760

RESUMO

Mast cells (MCs) are known to have a pathological impact in a variety of settings, in particular in allergic conditions. There is also limited evidence implicating MCs in diabetes, raising the possibility that MC function may be influenced by alterations in glucose levels. However, it is not known whether MCs are directly affected by elevated glucose concentrations. Moreover, it is not known which glucose transporters that are expressed by MCs, and whether MCs are dependent on glucose transporters for activation. Here we addressed these issues. We show that MCs express high levels of both glucose transporter 1 (GLUT1/Slc2A1) and GLUT3 (Slc2A3). Further, we show that the inhibition of either GLUT1 or GLUT3 dampens both MC degranulation and cytokine induction in response to IgE receptor crosslinking, and that combined GLUT1 and GLUT3 inhibition causes an even more pronounced inhibition of these parameters. In contrast, the inhibition of GLUT1 or GLUT3, or combined GLUT1 and GLUT3 inhibition, had less impact on the ability of the MCs to respond to activation via compound 48/80. Elevated glucose concentrations did not affect MC viability, and had no stimulatory effect on MC responses to either IgE receptor crosslinking or compound 48/80. Altogether, these findings reveal that MCs are strongly dependent on glucose transport via GLUT1 and/or GLUT3 for optimal responses towards IgE-mediated activation, whereas MC functionality is minimally affected by elevated glucose levels. Based on these findings, antagonists of GLUT1 and GLUT3 may be considered for therapeutic intervention in allergic conditions.

9.
Discov Immunol ; 3(1): kyad028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567292

RESUMO

Mast cells are infamous for mediating allergic and inflammatory diseases due to their capacity of rapidly releasing a wide range of inflammatory mediators stored in cytoplasmic granules. However, mast cells also have several important physiological roles that involve selective and agonist-specific release of these active mediators. While a filtering mechanism at the plasma membrane could regulate the selective release of some cargo, the plethora of stored cargo and the diversity of mast cell functions suggests the existence of granule subtypes with distinct trafficking pathways. The molecular mechanisms underlying differential trafficking and exocytosis of these granules are not known, neither is it clear how granule trafficking is coupled to the stimulus. In endothelial cells, a Rab GTPase, Rab46, responds to histamine but not thrombin signals, and this regulates the trafficking of a subpopulation of endothelial-specific granules. Here, we sought to explore, for the first time, if Rab46 plays a role in mast cell function. We demonstrate that Rab46 is highly expressed in human and murine mast cells, and Rab46 genetic deletion has an effect on mast cell degranulation that depends on both stimuli and mast cell subtype. This initial insight into the contribution of Rab46 to mast cell function and the understanding of the role of Rab46 in stimuli-dependent trafficking in other cell types necessitates further investigations of Rab46 in mast cell granular trafficking so that novel and specific therapeutic targets for treatment of the diverse pathologies mediated by mast cells can be developed.

10.
Immunol Allergy Clin North Am ; 44(2): 311-327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575226

RESUMO

Mast cells play a central role in the pathogenesis of eosinophilic gastrointestinal disorders (EGIDs), including eosinophilic esophagitis. Their interactions with immune and structural cells, involvement in tissue remodeling, and contribution to symptoms make them attractive targets for therapeutic intervention. More is being discovered regarding the intricate interplay of mast cells and eosinophils. Recent studies demonstrating that depletion of eosinophils is insufficient to improve symptoms of EGIDs have raised the question of whether other cells may play a role in symptomatology and pathogenesis of EGIDs.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Humanos , Mastócitos , Enterite/terapia , Enterite/diagnóstico , Gastrite/diagnóstico , Gastrite/terapia , Esofagite Eosinofílica/terapia , Esofagite Eosinofílica/diagnóstico
12.
Cardiovasc Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630620

RESUMO

Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodeling and fibrosis. Mast cells release preformed mediators (e.g., histamine, tryptase, chymase) and de novo synthesized mediators [e.g., cysteinyl leukotriene C4 (LTC4) and prostaglandin D2 (PGD2)], as well as cytokines and chemokines, which can activate different resident immune cells (e.g., macrophages) and structural cells (e.g., fibroblasts, endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and/or heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared to mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.

13.
Allergy ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634175

RESUMO

BACKGROUND: Chronic spontaneous urticaria (CSU) is a common, debilitating skin disorder characterized by recurring episodes of raised, itchy and sometimes painful wheals lasting longer than 6 weeks. CSU is mediated by mast cells which are absent from peripheral blood. However, lineage-CD34hiCD117int/hiFcεRI+ cells in blood have previously been shown to represent a mast cell precursor. METHODS: We enumerated FcεRI-, FcεRI+ and FcεRIhi lineage-CD34+CD117+ cells using flow cytometry in blood of patients with CSU (n = 55), including 12 patients receiving omalizumab and 43 not receiving omalizumab (n = 43). Twenty-two control samples were studied. Disease control and patient response to omalizumab was evaluated using the urticaria control test. We performed single-cell RNA sequencing (scRNA-Seq) on lineage-CD34hiCD117hi blood cells from a subset of patients with CSU (n = 8) and healthy controls (n = 4). RESULTS: CSU patients had more lineage-CD34+CD117+FcεRI+ blood cells than controls. Lineage-CD34+CD117+FcεRI+ cells were significantly higher in patients with CSU who had an objective clinical response to omalizumab when compared to patients who had poor disease control 90 days after initiation of omalizumab. scRNA-Seq revealed that lineage-CD34+CD117+FcεRI+ cells contained both lymphoid and myeloid progenitor lineages, with omalizumab responsive patients having proportionally more myeloid progenitors. The myeloid progenitor lineage contained small numbers of true mast cell precursors along with more immature FcεRI- and FcεRI+ myeloid progenitors. CONCLUSION: Increased blood CD34+CD117+FcεRI+ cells may reflect enhanced bone marrow egress in the setting of CSU. High expression of these cells strongly predicts better clinical responses to the anti-IgE therapy, omalizumab.

14.
EJHaem ; 5(2): 412-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633112
15.
Heliyon ; 10(7): e28401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586354

RESUMO

Background: Asthma, a principally T helper 2 (Th2) cell mediated immunological disease, is categorized into Th2-high and Th2-low endotypes. The influence of these endotypes on clinical characteristics and treatment responsiveness in asthma is yet to be completely understood. This study delves into the underlying molecular mechanisms of Th2 endotypes on asthma. Methods: Transcriptomics data of airway epithelial and corresponding clinical information were sourced from the GEO. The co-expression modules were established by WGCNA. Cytoscape was applied to construct PPI networks, and hub genes were determined via the Cytohubba plugin. Additionally, a functional enrichment analysis was conducted on the co-expressed genes from the relevant modules. The relative abundances levels of 22 different types of immune cells in asthma patients were evaluated by CIBERSORT algorithm. Results: There were 471 genes in the pink module significantly correlated with Th2 endotype. Overall, 151 DEGs were identified in the various Th2 endotypes, and 66 were obtained through intersection with the pink module. In the PPI network, the ten most important genes that regulate Th2 endotypes were selected as hub genes. In Th2-high endotype asthma, the hub genes were significantly related to γ-aminobutyric acid (GABA) pathways, indicating that hub genes can mainly regulate Th2-high endotype asthma through GABAergic system. Conclusions: The severity of asthma is influenced by different Th2 endotypes. GABAergic related hub genes may provide innovative insights for the treatment of Th2-high asthma.

16.
Sud Med Ekspert ; 67(2): 17-19, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38587153

RESUMO

OBJECTIVE: To examine the applicability of IHC staining method: with TGF-ß1 antibodies (serial examination, statistically processed results) and with mast cell tryptase antibodies for injuries vitality determination. MATERIAL AND METHODS: 261 skin autopsy samples with mechanical injuries from 29 persons were divided to 3 groups (87 in each group): vital injuries, postmortal injuries, control non-injured samples. A routine histological examination using standard H&E stain and IHC both with TGF-ß1 and mast cells tryptase antibodies was performed. RESULTS AND CONCLUSION: The positive TGF-ß1 staining (score 2-3) was found in keratinocytes in vitally injured skin and the negative or weak one (score 0-1) was found in control postmortally injured and non-injured samples. Additionally, dermal TGF-ß1 expression was found in some vitally injured skin samples. The difference between vitally injured skin and control samples was statistically significant (p<0.05). No significant difference of dermal mast cells density in groups 1, 2, 3 was found.


Assuntos
Lesões dos Tecidos Moles , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Pele/lesões , Autopsia
17.
Int Arch Allergy Immunol ; : 1-7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588651

RESUMO

INTRODUCTION: Mast cells are known for their involvement in allergic reactions but also in inflammatory reactions via secretion of numerous pro-inflammatory chemokines, cytokines, and enzymes. Drug development has focused on antiproliferative therapy for systemic mastocytosis and not on inhibitors of mast cell activation. The only drug available as a "mast cell blocker" is disodium cromoglycate (cromolyn), but it is poorly absorbed after oral administration, is a weak inhibitor of histamine release from human mast cells, and it develops rapid anaphylaxis. Instead, certain natural flavonoids, especially luteolin, can inhibit mast cell activation. METHODS: Here, we compared pretreatment (0-120 min) with equimolar concentration (effective dose for 50% inhibition = 100 mm for inhibition of histamine release by cromolyn) of cromolyn and luteolin on release of mediators from the cultured human LADR mast cell line stimulated either by immunoglobulin E (IgE) and anti-IgE or with IL-33. RESULTS: We show that luteolin is significantly more potent than cromolyn inhibiting release of histamine, tryptase, metalloproteinase-9, and vascular endothelial growth factor. Moreover, while luteolin also significantly inhibited release of IL-1ß, IL-6, and IL-8 (CXCL8) and TNF, cromolyn had no effect. CONCLUSION: These findings support the use of luteolin, especially in liposomal form to increase oral absorption, may be a useful alternative to cromolyn.

18.
Inflamm Res ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587532

RESUMO

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38636606

RESUMO

BACKGROUND: Immunoglobulin E, IgE)-mediated degranulation of mast cells, MCs) provides rapid protection against environmental hazards, including animal venoms. A fraction of tissue-resident MCs intimately associates with blood vessels. These perivascular MCs were reported to extend projections into the vessel lumen and to be the first MCs to acquire intravenously injected IgE, suggesting that IgE loading of MCs depends on their vascular association. OBJECTIVE: We sought to elucidate the molecular basis of the MC-blood vessel interaction and to determine its relevance for IgE-mediated immune responses. METHODS: We selectively inactivated the Itgb1 gene, encoding the ß1 chain of integrin adhesion molecules, ITGB1; in MCs by conditional gene targeting in mice. We analyzed skin MCs for blood vessel association, surface IgE density, capability to bind circulating antibody specific for MC surface molecules, as well as in vivo responses to antigen administered via different routes. RESULTS: Lack of ITGB1 expression severely compromised MC blood vessel association. ITGB1-deficient MCs showed normal densities of surface IgE but reduced binding of intravenously injected antibodies. While their capacity to degranulate in response to IgE ligation in vivo was unimpaired, anaphylactic responses to antigen circulating in the vasculature were largely abolished. CONCLUSION: ITGB1-mediated association of MCs with blood vessels is key for MC immune-surveillance of blood vessel content, but is dispensable for slow steady-state loading of endogenous IgE onto tissue-resident MCs.

20.
Int Immunopharmacol ; 132: 112030, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603861

RESUMO

Mast cells (MCs) play a significant role in various diseases, and their activation and degranulation can trigger inflammatory responses and barrier damage. Several studies have indicated that vagus nerve stimulation (VNS) exerts ameliorates neurological injury, and regulates gut MC degranulation. However, there is limited research on the modulatory effect of VNS on MCs in both the gut and brain in brain ischemia-reperfusion (I/R) injury in this process. We aim to develop a minimally invasive, targeted and convenient VNS approach to assess the impact of VNS and to clarify the relationship between VNS and MCs on the prognosis of acute ischemic stroke. We utilized middle cerebral artery occlusion/reperfusion (MCAO/r) to induce brain I/R injury. After the experiment, the motor function and neurofunctional impairments of the rats were detected, and the gastrointestinal function, blood-brain barrier (BBB) and intestinal barrier damage, and systemic and local inflammation were evaluated by Nissl, TTC staining, Evans blue, immunofluorescence staining, transmission electron microscopy, western blot assays, ELISA, and fecal 16S rRNA sequencing methods. Our research confirmed that our minimally invasive VNS method is a novel approach for stimulating the vagus nerve. VNS alleviated motor deficits and gastrointestinal dysfunction while also suppressing intestinal and neuroinflammation. Additionally, VNS ameliorated gut microbiota dysbiosis in rats. Furthermore, our analysis indicated that VNS reduces chymase secretion by modulating MCs degranulation and improves intestinal and BBB damage. Our results showed that VNS treatment can alleviate the damage of BBB and colonic barrier after cerebral I/R by modulating mast cell degranulation, and alleviates systemic inflammatory responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...